17beta-estradiol inhibits cyclic strain-induced endothelin-1 gene expression within vascular endothelial cells.

نویسندگان

  • Shu-Hui Juan
  • Jin-Jer Chen
  • Cheng-Hsien Chen
  • Heng Lin
  • Ching-Feng Cheng
  • Ju-Chi Liu
  • Ming-Hsiung Hsieh
  • Yen-Ling Chen
  • Hung-Hsing Chao
  • Tso-Hsiao Chen
  • Paul Chan
  • Tzu-Hurng Cheng
چکیده

It has been well documented previously that 17beta-estradiol (E2) exerts a protective effect on cardiovascular tissue. The possible role of E2 in the regulation of endothelin (ET)-1 production has been previously reported, although the complex mechanisms by which E2 inhibits ET-1 expression are not completely understood. The aims of this study were to examine whether E2 was able to alter strain-induced ET-1 gene expression and also to identify the putative underlying signaling pathways that exist within endothelial cells. For cultured endothelial cells, E2 (1-100 nM), but not 17alpha-estradiol, inhibited the level of strain-induced ET-1 gene expression and also peptide secretion. This inhibitory effect elicited by E2 was able to be prevented by the coincubation of endothelial cells with the estrogen receptor antagonist ICI-182,780 (1 microM). E2 also inhibited strain-enhanced NADPH oxidase activity and intracellular reactive oxygen species (ROS) generation as measured by the redox-sensitive fluorescent dye 2',7'-dichlorofluorescin diacetate and the level of extracellular signal-regulated kinase (ERK) phosphorylation. Furthermore, the presence of E2 and antioxidants such as N-acetylcysteine and diphenylene iodonium were able to elicit a decrease in the level of strain-induced ET-1 secretion, ET-1 promoter activity, ET-1 mRNA, ERK phosphorylation, and activator protein-1 binding activity. In summary, we demonstrated, for the first time, that E2 inhibits strain-induced ET-1 gene expression, partially by interfering with the ERK pathway via the attenuation of strain-induced ROS generation. Thus this study delivers important new insight regarding the molecular pathways that may contribute to the proposed beneficial effects of estrogen on the cardiovascular system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

17 -Estradiol inhibits cyclic strain-induced endothelin-1 gene expression within vascular endothelial cells

Shu-Hui Juan, Jin-Jer Chen, Cheng-Hsien Chen, Heng Lin, Ching-Feng Cheng, Ju-Chi Liu, Ming-Hsiung Hsieh, Yen-Ling Chen, Hung-Hsing Chao, Tso-Hsiao Chen, Paul Chan, and Tzu-Hurng Cheng Graduate Institute of Medical Sciences and Department of Physiology, School of Medicine; Department of Medicine, Taipei Medical University, Taipei 100; Department of Internal Medicine, National Taiwan University H...

متن کامل

Inhibition of cyclic strain-induced endothelin-1 gene expression by resveratrol.

Resveratrol is a phytoestrogen naturally found in grapes and is among the major constituents of wine thought to have a cardioprotective effect. Endothelin-1 (ET-1) is a potent vasopressor synthesized by endothelial cells both in culture and in vivo. The aims of this study were to test the hypothesis that resveratrol may alter strain-induced ET-1 gene expression and to identify the putative unde...

متن کامل

17beta-estradiol inhibition of NADPH oxidase expression in human endothelial cells.

We investigated the hypothesis that the antiatherosclerotic effect of 17beta-estradiol (E2) is due to a shift in the nitric oxide (NO)/superoxide (O2-) balance in the vessel wall, thereby increasing the bioavailability of NO. In human umbilical vein cultured endothelial cells, E2 (1-100 nmol/l), but not 17alpha-estradiol, caused a time- and concentration-dependent decrease in expression of the ...

متن کامل

Estradiol attenuates hypoxia-induced pulmonary endothelin-1 gene expression.

The ovarian hormone 17beta-estradiol (E2beta) attenuates chronic hypoxia-induced pulmonary hypertension. We hypothesized that E2beta attenuates this response to hypoxia by decreasing pulmonary expression of the vasoactive and mitogenic peptide endothelin-1 (ET-1). To test this hypothesis, we measured preproET-1 mRNA and ET-1 peptide levels in the lungs of adult female normoxic and hypoxic (24 h...

متن کامل

Effects of estrogen on the vascular system.

The cardiovascular protective actions of estrogen are partially mediated by a direct effect on the vessel wall. Estrogen is active both on vascular smooth muscle and endothelial cells where functionally competent estrogen receptors have been identified. Estrogen administration promotes vasodilation in humans and in experimental animals, in part by stimulating prostacyclin and nitric oxide synth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 287 3  شماره 

صفحات  -

تاریخ انتشار 2004